
Neurocomputing 480 (2022) 76–88
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
PLAM: A plug-in module for flexible graph attention learning
https://doi.org/10.1016/j.neucom.2022.01.045
0925-2312/� 2022 Published by Elsevier B.V.

⇑ Corresponding author.
Xuran Pan a,b, Shiji Song a,b,⇑, Yiming Chen a,b, Liejun Wang c, Gao Huang a,b

a Tsinghua University, Beijing, China
bBeijing National Research Center for Information Science and Technology (BNRist), China
cXinjiang University, Xinjiang, China
a r t i c l e i n f o

Article history:
Received 18 August 2021
Revised 19 December 2021
Accepted 14 January 2022
Available online 21 January 2022

Keywords:
Graph-based learning
Graph convolutional networks
Self-attention
Semi-supervised node classification
a b s t r a c t

Graph Convolutional Networks (GCNs) are general deep representation learning models for graph-
structured data. In this paper, we propose a simple Plug-in Attention Module (PLAM) to improve the rep-
resentation power of GCNs, inspired by the recent success of the query-key mechanism in computer
vision and natural language processing. With this module, our network is able to adaptively learn the
weights from a node towards its neighbors. Different from existing attention-based GCNs, the proposed
PLAM has several important properties. First, the parameter space for the attention module is isolated
from that for feature learning. This ensures that the proposed approach can be conveniently applied to
existing GCNs as a plug-in module. Second, the anchor node and neighbor nodes are treated separately
when learning the attention weights, which further enhances the flexibility of our structure. Third, our
attention module extracts higher-level information by computing the inner product of the features
between the anchor node and neighbor nodes, leading to significantly increased representation power.
Last, we take a step forward and propose a novel structural encoding technique for the graph attention
module to inject local and global structure information. Although being simple, our PLAM models have
achieved state-of-the-art performances on graph-structured datasets under both the transductive and
inductive settings. Additionally, experiments on image and point cloud datasets show potential applica-
tions of PLAM on several computer vision tasks.

� 2022 Published by Elsevier B.V.
1. Introduction

Convolutional Neural Networks (CNNs) have proved their effec-
tiveness in dealing with computer vision tasks [32,55,21,24]. A key
component of CNNs is the convolution operation which can extract
features via local filters with learned parameters. However, they
are only applicable when the input data has a regular grid struc-
ture. Recently, Graph Convolutional Networks (GCNs) [27,7] are
proposed as a counterpart of CNNs for graph-structured data. In
each layer, GCNs learn representations of graph nodes via 1-hop
neighborhood with spectral local filters followed by a fully con-
nected layer. In specific, the spectral filters are approximated
directly by the graph Laplacian along with a Chebyshev expansion
method. As a result, the spectral graph convolution is essentially
averaging feature vectors from the neighbors for each node. Due
to their high efficiency and representation power, GCNs have
attracted great research attention, and have been widely adopted
in areas like social network analysis [20,66,38], biology [81], graph
embedding [6,51], graph classification [61], transport [74], and
natural language processing [67,70,43].

Following GCNs, several studies on graph convolution models
have been made to provide deeper insights into this research field.
GraphSAGE [20] extends GCNs to large-scale inductive tasks. This
model proposes several neighborhood information aggregators
other than the one in GCNs, such as LSTM aggregator and max
pooling. More recently, Simple GCNs [66] are proposed for more
efficient graph convolution with a single layer network.

Despite the significant contributions the above studies have
made for GCNs, researchers have demonstrated that such graph
convolution faces a dilemma of over-smoothing and generalization
capability [35]. Specifically, the spectral convolution kernel weights
are determined solely by the graph structure, suggesting that the
information aggregation over the graph is not learnable, but prede-
fined. In many real-world scenarios, the nodes from different cate-
gories are often connected, leading to undesirable drawbacks with
deep or shallow architectures. For a deep model, the feature repre-
sentations across categories may become indistinguishable as the
graph convolution layers stack. On the other hand, for a shallow

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.01.045&domain=pdf
https://doi.org/10.1016/j.neucom.2022.01.045
https://doi.org/10.1016/j.neucom.2022.01.045
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
architecture, the reception field is limited within its relatively
nearer neighbors, neglecting long-range dependencies.

Popular attention mechanisms have been adopted in the field of
computer vision [76,15] and natural language processing [57,8]
and provide insight into this issue. Transformer [57] adopts a
multi-head attention module to achieve long-range dependencies
in recurrent neural networks. SAGAN [76] introduces self-
attention module for stable and effective training. In these studies,
a query-key mechanism is adopted and the attention coefficients
are computed from queries and keys extracted from the input.

Based on these observations, attention-based methods are
adopted in GCN models to dynamically learn the attention coeffi-
cients between each node and its neighbors [58,56,25]. As reme-
dies to the over-smoothing problem, these approaches have
shown great potential in enhancing the model performance. How-
ever, existing attention-based GCNs still have limitations. First, the
attention module is deeply entangled with the representation
learning module, i.e., the input feature is first served as input for
the representation learning module and then adopted to compute
the attention filter in a series connection structure, which makes it
difficult to generalize across different model architectures. Second,
the structure of the attention module in existing work is relatively
simple and does not fully explore the power of the attention mech-
anism. Third, the attention functions in these researches are
applied in a single space for both anchor and neighbor nodes. How-
ever, for each node, its importance as anchor and neighbor are not
necessarily identical. Although a node is connected to others in this
network, it may nonetheless be more an information provider (an-
chor) rather than a receiver (neighbor), or vice versa. As a result,
treating each node as two roles equally while calculating its relat-
ing attentions may be unable to produce sufficient expressive
power. Additionally, the receptive field in an attention layer is
mostly restricted within one-hop neighborhood, which discards
the structural information from the global perspective.

In this paper, we propose a flexible attention-based module,
named Plug-in Attention Module (PLAM) (as shown in Fig. 1), to
address the aforementioned weaknesses in existing approaches.
First, to disentangle the parameter space of the attention module
from that for feature learning, we design an independent self-
attention module utilizing raw features as input. Consequently,
the proposed approach can be conveniently applied to various
GCN structures as a plug-in module, while attention modules from
previous works are highly coupled with the feature learning layers.
Second, two techniques are presented to enhance the representa-
tion capability of the attention module: (1) By computing the
attention coefficients through inner product rather than linear
combinations, our attention module extracts higher-level informa-
tion between anchor node and neighbor nodes, leading to signifi-
cantly increased representation power. (2) The anchor and
neighbor nodes are learned separately before calculating the inner
product, which emphasizes the different roles between these can-
didates and further enhances the flexibility of our structure. Last,
inspired by the widely adopted positional encoding technique in
the self-attention mechanism [57], we propose a novel structural
encoding module by projecting several node measurements in
the graph theory to the feature space. When calculating the atten-
tion weights, we conduct dot product between node features and
features of node measurements, and add to the original attention
matrix. By this means, we introduce the structural information
from a global perspective. While being effective in enhancing the
model representation capability, PLAM maintains stability in the
training procedure. By bounding the spectrum of convolution fil-
ters, gradient explosion and numerical instabilities are alleviated.

The proposed PLAM can be applied in both transductive and
inductive settings. We validate our method on three transductive
benchmarks: Cora, Citeseer and Pubmed citation networks, four
77
inductive benchmarks: Reddit, protein–protein interaction (PPI)
and two graph-structured dataset PATTERN, CLUSTER generated
with stochastic block model (SBM). We achieve state-of-the-art
results on all of them and show the effectiveness of self-
attention module on graph-structured data. As a plug-in module,
our approach can also be conveniently adopted to improving the
performances of various GCN-based models. Furthermore, experi-
ments conducted on 2D image datasets and 3D point cloud dataset
have shown potential applications of PLAM on several computer
vision tasks.

In the remainder of this paper, we discuss related works in Sec-
tion 2. In Section 3 and 4, we introduce the method and provide
theoretical analysis. We show experimental results in Section 5
and conclude the paper in Section 6.
2. Related works

2.1. Graph neural networks

Early studies of Graph Neural Networks (GNNs)
[19,52,36,3,46,23,13,68] have attempted to apply neural network
models to the graph domain. Recent years have witnessed an
upsurge of interest in extending convolution [2,22,7,27,45,44] as
well as pooling [72,16,33] operations from grid-like images to
graphs. Simultaneously, particular techniques have also been
introduced to assist neural networks in dealing with graph-
structured data [5,79,50,73]. In this paper, we focus on graph con-
volution, or in general, the message passing [17] and aggregation
process.

Researchers proposed two types of convolution operations on
graphs: non-spectral and spectral approaches. Non-spectral convo-
lutions [10,45,44] are defined directly on the graph, typically
assembling a sub-graph of the local neighborhood and feeding it
into the traditional convolutional layer. Spectral approaches
[2,22,7,27] implement convolution operations in the Fourier
domain and the computation is based on the graph Laplacian. In
[7], an approximation using Chebyshev polynomials was proposed
with an efficient localized convolution framework. Graph Convolu-
tional Networks (GCNs) proposed by [27] further restricted the
graph convolution operation to the 1-hop neighborhood. More
recently, MixHop [26], GDC[30], Stronger GCN[39] mixed powers
of adjacency matrix to learn multi-hop information.
2.2. Attention-based GCNs

Since the convolution filters in GCNs are dependent only on the
graph structure, GCNs are restricted to transductive tasks and may
cause over-smoothing. To overcome these problems and enable the
networks to learn adaptive convolution weights, the concept of
attention is introduced to graph neural networks. Graph Attention
Networks (GAT) [58] is first proposed following the attention strat-
egy and learn the attention weights directly from node feature vec-
tors. The attention computation in GAT first receives the linearly
transformed features which are to be aggregated as input, resulting
in the entanglement with feature learning parameters. In contrast,
our module has an independent parameter space and is able to
generalize to various graph model architectures. Another related
approach is the Disentangled GCN (DisenGCN) [40]. Both Dis-
enGCN and PLAM models involve multiple linear transformations,
but DisenGCN aims to separate different kinds of neighbors, while
our PLAM models attempt to distinguish anchor and neighbor
nodes. Under many circumstances, the entangled factors in learned
features are indistinguishable while the directions of the message
passing are more useful and reliable. Several researches have also
considered to compute the attention coefficients based on other



Fig. 1. Demonstration of the proposed self-attention module. Only the feature transformation of the anchor node h0 is shown. The top row shows the transformation of a
standard GCN. The bottom row represents the structure of the proposed self-attention module. The anchor features hL

0 and neighbor features hL
1;h

L
2;h

L
3 are transformed into

the query space as Q0 and key space as K1;K2;K3, respectively. Attention coefficients b are computed between Q0 and key vectors. Information of neighbor nodes is
aggregated by the attention coefficients to obtain hL

0 after a fully connected layer.

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
similarity metrics. In [56], attention is calculated by cosine dis-
tance. Another attention learning framework presented in [25]
uses L1 distance. However, in the aforementioned methods, the
attention weights are mostly learned from 1st level representation
of the graph node features. PLAM is different in that it extracts
higher-level information through the inner product, and thus gains
higher expressive power. Besides, PLAM projects the anchor and
neighbor nodes into different spaces instead of a shared one,
endowing the model with better flexibility. Additionally,
attention-based approaches have shown great potential in other
related research areas, e.g., relational graph learning[75], knowl-
edge graph embedding[80], mapping[77], and graph classification
[33]. Graph attention models are also proved effective on vision
tasks, e.g., object detection[78,64], and video object segmentation
[49].
3. Method

In the paper, we aim to develop a plug-in module for graph neu-
ral networks with high expressive power. To achieve this goal, we
introduce a novel self-attention mechanism to the traditional GCN
structure. We will first define notations and give a mathematical
description of GCNs. Then, we describe how our module is applied
78
to the convolution operator. Two modes of applying the attention
module in the network are presented. Lastly, we compare our mod-
ule with the popular Graph Attention Networks.
3.1. Preliminaries

We start with an overview of GNN-based models and introduce
our notation in the context of semi-supervised node classification
task. Let G ¼ V ;Að Þ denotes a graph with node feature vectors
where V represents the vertex set consisting of nodes
v1;v2; . . . ; vNf g and A 2 RN�N is the adjacency matrix implying
the connectivity between nodes in the graph. In this paper, we
mainly focus on the undirected graph with identical edge weights,
which has a sparse and symmetric adjacency matrix where aij ¼ 1
suggests an edge between v i and v j, and aij ¼ 0 otherwise. Each
node has a feature of F dimensions and a one-hot label vector
out of C classes, composing feature matrix X 2 RN�F and label
matrix Y 2 RN�C . Only the labels of a subset of nodes are available
during training and other nodes are for prediction.

Modern GNN models usually follow a paradigm of message
passing and updating, where we aggregate features from neighbors
and update the representation of the anchor node recursively. Gen-



X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
erally, the function between kth and kþ 1ð Þth layer can be summa-
rized as:

a kð Þ
v ¼ Aggregate kð Þ h k�1ð Þ

u : u 2 N vð Þ
� �

; ð1Þ

h kð Þ
v ¼ Update kð Þ h k�1ð Þ

v ; a kð Þ
v

� �
; ð2Þ

where h kð Þ
v is the feature vector of node v of the kth layer and a kð Þ

v is
the representation integrated with received messages. In each layer,
an anchor node captures the information of its direct neighbors.
With the increase of network depth, representations of nodes from
longer ranges will be absorbed, iteratively achieving message
spreading through the whole graph along the edges.

3.2. Graph convolutional networks

Graph Convolutional Networks (GCNs) also follow the paradigm
of message passing and updating, learning deep representation of
each node over multiple layers, which is used for downstream
tasks. GCNs are practically an approximation of spectral convolu-
tion operation using Chebyshev polynomials, which boils down
to an efficient algorithm. Consequently, a GCN layer averages the
representations of neighbors after a linear mapping, which can
summarize as:

H kþ1ð Þ ¼ ReLU IN þ D�1
2AD�1

2

� �
H kð ÞW kð Þ

� �
; ð3Þ

where D is the degree matrix of A and W kð Þ 2 RF kþ1ð Þ�F kð Þ
is a trainable

weight matrix. Considering that the operator IN þ D�1
2AD�1

2 has
unbounded eigenvalues, repeated application with stacked layers
may result in numerical instabilities and erratic gradients. To allevi-
ate this problem, a renormalization trick is introduced:

IN þ D�1
2AD�1

2 ! eD�1
2eA eD�1

2; ð4Þ

with eA ¼ Aþ IN and eD being degree matrix of eA. By modifying the
normalization method, the upper bound of operator’s eigenvalue
is decreased from 2 to 1, alleviating the risk of instability while pre-
serving computation efficiency.

3.3. Plug-in attention module for GCNs

In the original GCNs, the convolution operator eD�1
2eA eD�1

2 is fixed
for each layer, implying that the weights shared between a node’s
neighbors are predefined and constant. In fact, during the update
procedure, each neighbor contributes regardless of their specific
features. Following GCN, attention models are proposed to learn
the weights based on the node features output by the current layer.
However, these approaches can not be plugged into other model
architectures since the attention module is highly coupled with
the feature learning layers. Besides, the structures of these models
fail to extract high-level information of the graph structure for
aggregation.

To overcome the aforementioned problems, we propose a Plug-
in Attention Module (PLAM), consisting of a novel attention module
to learn the convolution weights dynamically by introducing the
query-key mechanism. By isolating the parameter space of atten-
tion module from that for feature learning, PLAM can be conve-
niently applied to various state-of-the-art GCN structures.

Given a feature map of the lth layer hl 2 RN�Fl , we aim to first
transform the features into two spaces indicating the two roles
each node will play: a query space f and a key space g. Formally,
we learn the two spaces as

f hl
� �

¼ hlWl
q; g hl

� �
¼ hlWl

k; ð5Þ
79
where Wl
q;W

l
k 2 RFl�eF l

. eF l ¼ Fl=C is generally smaller than feature

dimension Fl, considering the computation efficiency. Then, the

attention matrix Bl ¼ bl
ij

h i
is calculated by dot product of query vec-

tors and key vectors:

slij ¼ f hl
i

� �
g hl

j

� �T
; ð6Þ

bl
ij ¼

softmaxj slij
� �

¼ e
sl
ijX

k2 i[N ið Þf g
e
sl
ik
; if eAij ¼ 1;

0; otherwise;

8>><>>: ð7Þ

where eA ¼ Aþ IN and bl
ij indicates the extent to which the model

attends to the jth node when synthesizing the ith node. With the
intention of preserving the graph’s structural information, node j
is considered only if it is a neighbor to i or node i itself. Then, the

output of the lth layer h lþ1ð Þ ¼ h lþ1ð Þ
0 ; . . . ;h lþ1ð Þ

N

� �
is the weighted

summation:

h lþ1ð Þ
i ¼ ReLU

X
j2 i[N ið Þf g

bl
ijh

lð Þ
j

 !
Wl

 !
; ð8Þ

whereWl is a learnable matrix for each layer. In self-attention mod-
els, there exist three groups of features: query, key and value. In our

graph self-attention module, hlWl can be seen as the value matrix.
Lastly, normalization is adopted for numerical stability. The final
model takes the form:

bY ¼ softmax BL . . .ReLU B1XW1
� �

. . .WL
� �

: ð9Þ

Intuitively, PLAM is able to recognize the relationships between two
connected nodes and extract more powerful feature representa-
tions. The input feature map of each layer is transferred to new fea-
ture spaces in which the inner product of query and key features are
trained to accurately represent the similarity between nodes. In this
way, the attention weights are supposed to contain richer informa-
tion about the relationship between two nodes, which is beneficial
in the process of message passing and aggregation. Furthermore,
the self-attention module is independent of the network layers,
i.e., the module can be conveniently applied to various GCN-based
models.

3.4. Structural encoding

With the aforementioned self-attention module, the anchor
node can aggregate information from neighbor nodes with
dynamic weights conditioned on their features. Nevertheless, the
receptive field of each node is restricted within its one-hop neigh-
borhood, leading to natural inferiority on modelling long-range
dependencies and global structural information. As a remedy, we
resort to the similar technique, positional encoding, which is
widely adopted in self-attention modules, and propose a novel
structural encoding to integrate the graph structural into attention
weight distribution.

Practically, we consider several graphmeasurements and reflect
each node’s properties from local and global perspectives respec-
tively. We first introduce the local clustering coefficient, which
quantifies the closeness of the neighborhood to a complete graph:

C ið Þ ¼ j Ajk : j; k 2 N ið Þ;Ajk ¼ 1
� �j

jN ið Þj jN ið Þj � 1ð Þ ; ð10Þ

where jN ið Þj is the number of nodes in i’s neighborhood.
We also adopt three centrality measurements as the quantifica-

tion of local and global structural. Betweenness centrality mea-



X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
sures the importance of a node to the whole graph, and is com-
puted as the number of shortest paths that passes through a cer-
tain node:

g ið Þ ¼
X
i–j–k

rjk ið Þ
rjk

; ð11Þ

where rjk is the total number of shortest paths from node j to k, and
rjk ið Þ represents the number of those paths that pass through node
i. For connected graphs, closeness centrality measures the average
distance of a certain node to the whole graph, which is defined as:

c ið Þ ¼ NX
j

d j; ið Þ ; ð12Þ

where d j; ið Þ correspond to the length of shortest path from node j
to node i, and N is the number of nodes in the graph. We also
include the degree centrality to encode the local structure, which
is defined as the degree of the node:

d ið Þ ¼ deg ið Þ ¼ Dii: ð13Þ
With these graph measurements, we can inject the local and global
graph structure, as a complementary to the feature space. Specifi-
cally, we use a fully connected layer to encode structural informa-
tion and augment attention weights:

r ið Þ ¼ FC C ið Þ; g ið Þ; c ið Þ;d ið Þð Þ; ð14Þ
slij ¼ f hl

i

� �
g hl

j

� �T
þ r ið Þg hl

j

� �T
: ð15Þ

The computation of attention matrix and feature aggregation follow
the same pipeline as Eq. (7�9). As a consequence, r ið Þ is indepen-
dent of the node features and relies solely on the graph structural
information, which emphasizes the intrinsic relationship between
anchor node and neighbor node.

3.5. Attention modes

In this subsection, we propose two modes of applying attention
matrix to the convolution layer, symmetric and asymmetric atten-
tions. The two modes correspond respectively to graphs with undi-
rected and directed weighted edges, endowing PLAM with better
adaptability for various data.

3.5.1. Symmetric attention
Since most of the input data for semi-supervised classification

tasks take the shape of undirected graphs, the first mode we pro-
pose uses symmetric attention matrix before softmax normaliza-
tion. Therefore, two connected nodes are equally important to
each other. Adopting the symmetric attention matrix preserves
the essential characteristic of the undirected graph and shares
weights for the two directions along each edge in the message

passing procedure. Specifically, we let Slsym ¼ slij þ slji
� �

=2 and the

convolution operator can be written as:

Bl
sym ¼ softmaxeA �j–0

Slsym � eA� �
; ð16Þ

where � represents matrix dot product. Notice that we can also

decompose the softmax function and write Bl
sym as:

Bl
sym ¼ eDl

� ��1fWl; ð17Þ

where

fWl ¼ exp Slsym
� �

� eA; ð18Þ
80
and eDl is the degree matrix of fWl. The exp(�) function implies a
point-wise exponential operation to the matrix.

3.5.2. Asymmetric attention
The second mode views the attention coefficients as a message

passing function along the directed edges, and thus there may exist
two weights on each edge distinguished by the two directions.
Therefore, attention matrix of directed graph is asymmetric. Con-
sidering that each node contains different local structural informa-
tion, the asymmetry of attention coefficients can be seen as further
adjustment.

We simply let Slasy ¼ slij with

Bl
asy ¼ Bl ¼ softmaxeA �j–0

Slasy � eA� �
; ð19Þ

which is the same form as Eq. (17).

3.6. Comparisons to GAT

Graph Attention Networks (GAT) [58] is an effective attention-
based model, assigning different weights to different neighbor-
hoods’ features. Both GAT and PLAM introduce an attention mod-
ule into the node representation learning structure, learning
dynamic convolution filters based on the node features. Neverthe-
less, the mechanisms of the two approaches are different. GAT lin-
early transforms node features and concatenate anchor features
with features of each of neighbors. The attention coefficients are
computed as:

aij ¼ softmax aT ~hi;
~hj

h i� �
¼ softmax aT1

~hi þ aT2
~hj

� �
; ð20Þ

where a ¼ a1; a2½ � is a parameterized weight matrix and ~hi;
~hj repre-

sent node features after the linear transformation. The attention
weights in GAT models are computed as the summation of repre-
sentations for the anchor node and neighbor node. Therefore, the
expressive capability of the module is limited because the atten-
tions are regressed by the first level of the node features. By com-
parison, as shown in Eq. (6) and (7), the self-attention module
proposed in our PLAMmodel defines the attention weights as a sec-
ond level function of the node features:

bl
ij ¼ softmax hiW

l
q Wl

k

� �T
hT
j

� �
¼ softmax hiWqkh

T
j

� �
:

ð21Þ

Specifically, attention in GAT can be seen as particular cases of
PLAM with carefully designed projection weights. By reformulating
Eq. (21) as:

bl
ij ¼

exp hiWqkh
T
jð ÞX

k2 i[N ið Þf g
exp hiWqkh

T
kð Þ

¼ exp hiWqkh
T
jð Þ exp a1h

T
ið ÞX

k2 i[N ið Þf g
exp hiWqkh

T
kð Þ exp a1h

T
ið Þ

¼ exp hiWqkh
T
j þa1h

T
ið ÞX

k2 i[N ið Þf g
exp hiWqkh

T
kþa1h

T
ið Þ :

ð22Þ

If we carefully set:

hiWqk ¼ a2;

we have



1 In this subsection, we unify the denotation Bl
sym and Bl

asy as Bl; Slsym and Slasy as Sl

for simplicity without confusion.

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
bl
ij ¼

exp a2h
T
j þa1h

T
ið ÞX

k2 i[N ið Þf g
exp a2h

T
kþa1h

T
ið Þ

¼ softmax a1h
T
i þ a2h

T
k

� �
;

ð24Þ

which has the same formulation as with GAT where the attentions
are regressed by the first level of the node features (Eq. (20)). In this
way, our attention module can achieve higher representation capa-
bility which enhances generalization power of the model. Addition-
ally, by isolating the parameter space of attention module from that
for feature learning, PLAM can be conveniently applied to various
state-of-the-art GCN structures while GAT is less suitable in several
models.

Furthermore, we propose a structural encoding technique as a
complement to the lack of structural information, which provides
the model with higher capacity and flexibility.

4. Spectral analysis

As shown in Section 3.3, PLAM shares some similarities with

traditional GCN architecture, where Bl can be seen as an aug-
mented convolution operator. A similar property is that, if the
operator has an eigenvalue ki satisfying jkij > 1, with multiple
stacked convolution layers, high power of the attention matrix will
lead to feature over-amplifying, causing numerical explosion. In

this section, we analyze the spectrum of Bl and show that PLAM
models can maintain the property of numerical stability while pro-
viding dynamic weight distributions among neighbors.

4.1. Symmetric mode

In the symmetric mode, Bl
sym can be interpreted as a normalized

symmetric matrix whose eigenvalues can be bounded by the prop-
erties of Laplacian matrix. We follow [27] and approximate the lar-
gest eigenvalue of the normalized Laplacian matrixeL ¼ I � eDl

� ��1
2fWl eDl

� ��1
2
to be 2 as we can expect that network

parameters will adapt to this assumption during training. Notice

that Bl
sym is a similar matrix to eDl

� ��1
2fWl eDl

� ��1
2
. Therefore, Bl

sym

has eigenvalues in range [-1,1], i.e., norms of eigenvalues of Bl
sym

are bounded by 1 and numerical explosion is alleviated.

4.2. Asymmetric mode

For the asymmetric mode, we refer to a corollary of the Perron-
Frobenius Theorem to demonstrate the stability.

Proposition (Corollary of Perron-Frobenius Theorem). Let B
2 RN�N be a non-negative square matrix such that:

(1)
P

jBij ¼ 1; i ¼ 1;2; . . . ;N.
(2) B is irreducible.

Then the norms of eigenvalues of B are bounded by 1.
It is obvious that condition (1) is satisfied for the normalized

Bl
asy. There is a twofold discussion for condition (2). An irreducible

Bl
asy indicates a strongly connected graph. Otherwise, the graph is

partitioned into several sub-graphs, meaning that the correspond-

ing reducible Bl
asy can be transformed into a block diagonal matrix

through elementary transformations. Then the property can be
applied to each sub-matrix independently, and the stability still
holds.
81
4.3. Spectral reduction

While bounding the spectral radius of attention matrices effec-
tively alleviates the risk of gradient explosion, numerical instabili-
ties still exist. Some feature representations may turn to opposite
signs alternatively as a result of the multiplication with negative
eigenvalues, suffering from large numerical variation. Therefore,

reducing the absolute values of negative eigenvalues of Bl1 is an
effective approach to eliminate the influence.

To tackle the numerical issue, we adopt a similar renormaliza-
tion trick proposed in [66]. Notice that the convolution operator
in PLAM can be decomposed to

Bl ¼ eDl
� ��1

exp Sl
� �

� Aþ Ið Þ
h i

:

Considering that the original adjacency matrix of a graph doesn’t

contain self-loops, exp Sl
� �

� A provides no attention contribution

on the main diagonal. The renormalization trick adds an identity
matrix to the adjacency matrix, and thus fills non-negative values
to the diagonal entries of the attention matrix before normalization.
This revision enforces the output features of each node to contain
information from its own input instead of only neighbors.

It has been proved in [66] that by augmenting the adjacency

matrix with identity matrix (e.g., eA ¼ Aþ kI; k > 0), the spectral
radius of the corresponding normalized Laplacian matrixeL ¼ I � eD�1

2eA eD�1
2 turns smaller. This is equivalent to increasing neg-

ative eigenvalues of ~D ¼ eD�1
2eAeD�1

2. Therefore, the negative eigen-
values are pulled nearer to 0, and the instability is mitigated. On
this basis, we can further prove that the conclusion still stands
when filling arbitrary non-negative values to the diagonal entries.
Therefore, it is concluded that the renormalization trick in PLAM is
helpful for maintaining numerical stability. Numerical experi-
ments are given in Section 5.3.4 which verify the effectiveness.
5. Experiments

In this section, we empirically validate the proposed method on
several widely used semi-supervised node classification bench-
marks, including citation networks and social networks. We first
evaluate the effectiveness of PLAM comparing with state-of-the-
art models on both transductive and inductive tasks. Meanwhile,
as a complementary component to current approaches, we imple-
ment our self-attention module on several GCN-based structures
and investigate the performance. We also extend our empirical
analysis to several downstream tasks in the field of computer
vision, including image classification and point cloud semantic seg-
mentation. To further demonstrate the generalization power of
PLAM, we also conduct experiments on citation networks with dif-
ferent dataset splits. Then, we present a spectral analysis of our
method to testify the stability in the training procedure. Visualiza-
tion result of the clustering property in the learned feature space is
also provided. For simplicity, we will refer to the models with sym-
metric and asymmetric attention matrices as PLAMu (indicating
undirected) and PLAMd (indicating directed).

5.1. Node classification

5.1.1. Datasets and experimental setup
Datasets.We conduct our experiments on five real-world graph

datasets and two generated graphs, whose statistics are listed in
Table 1. For transductive learning, we evaluate our method on
,



Table 1
Dataset Statistics.

Dataset Transductive Inductive
Cora Citeseer Pubmed Reddit PPI PATTERN CLUSTER

Graphs 1 1 1 1 24 14 K 12 K
Classes 7 6 3 41 121(multilabel) 2 6

Avg. Nodes 2,708 3,327 19,717 2372 232,965 117 117
Avg. Edges 5,429 4,732 44,338 11,606,919 34113 4749 4302

Node feature 1,433 3,703 500 602 50 3 7
Training Nodes/Graphs 140 Nodes 120 Nodes 60 Nodes 152,410 Nodes 20 Graphs 10000 Graphs 10000 Graphs
Validation Nodes/Graphs 500 Nodes 500 Nodes 500 Nodes 23,699 Nodes 2 graphs 2000 Graphs 1000 Graphs

Test Nodes/Graphs 1,000 Nodes 1,000 Nodes 1,000 Nodes 55,334 Nodes 2 graphs 2000 Graphs 1000 Graphs

Table 2
Test accuracy (%) on transductive learning datasets. We report mean values and
standard deviations of the test accuracies in 30 independent experiments. The best
results are highlighted with boldface and the asterisk (*) marker denotes that the
difference is statistically significant by a t-test at significance level 0.05.

Dataset Citeseer Cora Pubmed

GCN [27] 70.3 ± 0.4 81.5 ± 0.5 79.0 ± 0.4
GIN [69] 66.1 ± 0.9 77.6 ± 1.1 77.0 ± 1.2

AdaLNet [37] 68.7 ± 1.0 80.4 ± 1.1 78.1 ± 0.4
FastGCN [4] 68.8 ± 0.6 79.8 ± 0.3 76.8 ± 0.6
DGI [59] 71.8 ± 0.7 82.3 ± 0.6 76.8 ± 0.6

MixGraph [60] 72.8 ± 0.4 83.3 ± 0.6 79.0 ± 0.2
GAT [58] 72.5 ± 0.7 83.0 ± 0.6 78.5 ± 0.3
AGNN [56] 71.6 ± 0.5 82.7 ± 0.4 78.9 ± 0.4
SSA [77] 72.36 ± 0.45 83.22 ± 0.29 79.02 ± 0.11

Deep-IRTarget [78] 72.62 ± 0.71 82.91 ± 0.47 78.77 ± 0.56

simple PLAM 72.87 ± 0.38 83.75 ± 0.64* 79.40 ± 0.44*
PLAMu 73.36 ± 0.24* 83.66 ± 0.42* 79.06 ± 0.37
PLAMd 73.25 ± 0.46* 84.01 ± 0.23* 79.41 ± 0.65*

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
the Cora, Citeseer, Pubmed datasets, following the experimental
setup in [53]. There are 20 nodes per class with labels to be used
for training and all the nodes’ features are available. However,
the training algorithm has access to all of the nodes- feature vec-
tors. The predictive power of the trained models is evaluated on
1000 test nodes, and we use 500 additional nodes for validation
purposes. PPI, Reddit, Pattern and Cluster datasets are adopted
for inductive learning. PPI [82] is a protein–protein interaction
dataset that contains 20 graphs for training, 2 for validation and
2 for testing while testing graphs remain unobserved during train-
ing. Reddit is a larger dataset and sub-graphs are sampled as mini-
batches in the training and test procedure. PATTERN and CLUSTER
[11] are graph datasets generated by the stochastic block model,
which are designed for node-level graph pattern recognition and
graph clustering tasks.

Baselines. Our method is compared to several baselines includ-
ing state-of-the-art graph neural networks. For transductive learn-
ing on the citation networks, we compare against GCN [27], GAT
[58], DGI [59], FastGCN [4], GIN [69], AdaLNet [37], AGNN [56],
MixGraph[60], SSA [77], and Deep-IRTarget [78]. To demonstrate
the validity of projecting anchor and neighbor nodes into separate
spaces, we also consider a simple PLAM model with Wq ¼ Wk and
compare it with the full versions. In addition, We implement our
method on several graph convolution structures, including SGC
[66], TAGCN [9], APPNP [29], GenGNN [41] and Stronger GCN
[39], to further evaluate the effectiveness of self-attention module.
We follow publicly released implementation on each model and
almost reproduce all reported performance from the original
paper. For inductive learning on PPI and Reddit, we provide com-
parison results with GAT, DGI, SGC, GraphSAGE [20] and FastGCN.
As GraphSAGE has variations for unsupervised and supervised
learning, we report highest performance.

Experimental Setup. To ensure a fair comparison with other
methods, we implement our module based on the original GCN
structure. For Cora, Citeseer, Pubmed, we use two convolution lay-
ers with hidden dimension h ¼ 64. For generated dataset PATTERN
and CLUSTER, we determine the model hyperparameters with a
budget of 100 k [11]. We apply L2 regularization with k ¼ 0:0005
and use dropout on both layers and the attention matrix. For com-
putation efficiency, we adopt C ¼ 8 on all the datasets. For training
strategy, we initialize weights using the initialization described in
[18] and adopt an early stop if validation loss does not decrease for
certain consecutive epochs, following [27]. The implementations of
baseline models are based on the PyTorch-Geometric library [14]
and Deep Graph Library [62] in all experiments.

5.1.2. Transductive learning
Table 2 presents the performance of our method and several

state-of-the-art graph neural networks on transductive learning
datasets. It can be observed that PLAM models outperform almost
all the baseline models on all datasets. Notably, PLAM models
achieve consistently higher accuracy than GAT and AGNN, with
same model structure and hidden dimensions, showing superiority
82
over other attention methods. Comparing with GAT and AGNN, our
method significantly improves the generalization performance of
traditional GCNwhile it can also boil down to an individual module
that can be easily implemented in many graph convolution-based
layers. We conduct experiments with GCN-based models and pre-
sent test accuracies with and without self-attention module in
Table 3. As we can see, each model achieves considerable improve-
ments on all datasets after applying our method. Interestingly, we
can also observe that our method is more effective on the Cora
dataset. A plausible explanation is that attention matrix produces
a marked effect on graphs with denser edges. If we compare the
sparse factor of the adjacency matrix of each dataset,

d ¼ #non� zero elements
#matrix elements

; ð26Þ

we can find that the Cora dataset has the largest sparse factor
(nearly twice larger than Citeseer and seven times larger than
Pubmed). Therefore, a wider range of neighborhoods is involved
in the message passing procedure, which is more suitable for the
implementation of our method. Additionally, we can observe an
obvious gap between the simple and full version PLAMs, indicating
the effectiveness of treating anchor and neighbor nodes
respectively.

We also investigate the training and test consumption of PLAM
and compare with several representative baseline models from
Table 2 and Table 3. To empirically testify the computation effi-
ciency, we conduct experiments on Cora and report the training
and test time of on a single RTX 2080 Ti GPU. The results are shown
in Table 4. As we can observe, when combining with vanilla GCNs,
the training and test time of our model is similar to GAT and AGNN
and faster than APPNP. When combining with APPNP, the addi-
tional training and test time is minor when comparing to the orig-
inal model.



Table 3
Test accuracies (%) of state-of-the-art GCN-based models with and without self-
attention module on citation datasets.

Dataset Citeseer Cora Pubmed

APPNP [29] 70.53 ± 0.87 82.69 ± 0.82 79.41 ± 0.62
APPNP + PLAM 70.82 ± 0.52 83.31 ± 0.81* 79.61 ± 0.41

TAGCN [9] 71.01 ± 0.80 82.72 ± 0.54 79.42 ± 0.56
TAGCN + PLAM 71.77 ± 0.68* 83.30 ± 0.51* 79.61 ± 0.33

SGC [66] 71.9 ± 0.1 81.0 ± 0.0 78.9 ± 0.0
SGC + PLAM 72.19 ± 0.52* 82.22 ± 0.50* 79.60 ± 0.36*
GenGNN [41] 74.5 ± 0.1 82.9 ± 0.3 78.4 ± 0.6

GenGNN + PLAM 74.89 ± 0.29* 83.67 ± 0.33* 79.04 ± 0.56*
Stronger GCN [41] 73.9 ± 0.4 83.2 ± 0.5 80.1 ± 0.6

Stronger GCN + PLAM 74.11 ± 0.2* 83.92 ± 0.6* 80.20 ± 0.2

Table 4
Training and test time on Cora. We report mean values in 5 independent experiments.

Method Training Time(s) Test Time(ms) Accuracy(%)

GCN [27] 1.8 1.9 81.5 ± 0.5
GAT [58] 5.4 3.3 83.0 ± 0.6
AGNN [56] 5.3 3.2 82.7 ± 0.4
APPNP [29] 9.8 13.6 82.7 ± 0.8

GCN + PLAM (ours) 5.7 3.2 84.0 ± 0.2
APPNP + PLAM (ours) 10.3 15.6 83.3 ± 0.8

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
5.1.3. Inductive learning
Table 5 and Table 6 presents the comparison results on induc-

tive learning datasets. It can be seen that PLAM models compare
favourably with all the competitive baselines. On both PPI and Red-
dit dataset, PLAM models achieve 0.5%-1% higher on test Micro-F1
score. On the generated datasets, PLAM models achieve higher
accuracy on CLUSTER and competitive results on PATTERN, where
models are restricted with budgets. Notably, PLAM is 7% and 1.3%
higher than GAT, demonstrating the effectiveness of the proposed
attention structure.

Besides, it is worth noting that attention-based methods signif-
icantly outperform other methods on PPI dataset with a gap of
more than 20%. Comparing with methods that depend heavily on
the structure information of graph, attention-based methods fur-
Table 5
Test Micro-F1 Score on inductive learning datasets. We report the mean values and
standard deviations of the test error in 5 independent experiments.

Dataset PPI Reddit

GAT [58] 97.3 ± 0.2 92.9 ± 0.1
SGC [66] 66.4 ± 0.0 94.9 ± 0.1

GraphSAGE [20] 61.2 ± 0.2 95.4 ± 0.2
FastGCN [4] – 93.7 ± 0.1
DGI [59] 63.8 ± 0.2 94.0 ± 0.1

PLAMu 97.69 ± 0.32 96.08 ± 0.04*
PLAMd 98.23 ± 0.08* 95.9 ± 0.42*

Table 6
Test accuracies (%) on generated graph datasets. We report mean values and standard
deviations of the test accuracies in 5 independent experiments.

Dataset Pattern Cluster

#Param Acc #Param Acc

GCN [27] 100,923 74.36 ± 1.59 101,655 47.82 ± 4.91
GIN [69] 100,884 98.25 ± 0.38 103,544 52.54 ± 1.03

GraphSAGE [20] 98,607 81.25 ± 3.84 99,139 53.90 ± 4.12
GAT [58] 109,936 90.72 ± 2.04 110,700 54.12 ± 1.21

GatedGCN [1] 104,003 97.24 ± 1.19 104,355 54.20 ± 3.58

PLAM 100,421 98.18 ± 0.41 88,303 55.45 ± 0.93*

83
ther focus on the relationship between neighbors extracted from
feature space, which is more robust among different graphs.

We also present the experimental results of combining our self-
attention module with state-of-the-art inductive learning models,
GraphSAGE and SGC, in Fig. 2. For GraphSAGE, we adopt the mean
aggregator. The Micro F1 scores on Reddit during the training pro-
cedure of 50 epochs are reported. Both PLAM models achieve
noticeable improvements, comparing with standard situations.
We can also observe that applying self-attention module provides
help on faster convergence.

5.2. Downstream tasks

We extend our empirical evaluation to several downstream
applications - 2D image classification and 3D point cloud semantic
segmentation. Experiment results show great potential of PLAM on
computer vision tasks.

5.2.1. Image classification
Datasets and experimental setup. We use the popular MNIST

and CIFAR10 image classification datasets. The original images
are converted to graphs using super-pixels extracted with the SLIC
technique [31], and the nodes are connected with the k-nearest
neighbor algorithm. We follow the setup in [11] and train the mod-
els with Adam optimizer with learning rate decay strategy. Similar
to the generated datasets, we restrict model parameters with a
budget of 100 k. Data statistics for two datasets are presented in
Table 7. Edge features are not applied in this comparison.

Performances. Table 8 shows experimental results on MNIST
and CIFAR10 datasets. As we can observe, PLAM achieves higher
performances on all the settings and shows a significant improve-
ment of 2% on CIFAR10 datasets, which demonstrates the efficacy
of the proposed method.

Comparing to citation and social networks, PLAM seems to have
a greater advantage on the 2D image datasets. We argue that the
reason is twofold: 1) Image classification is essentially a graph
classification task, where a Readout function is adopted to acquire
the global information. Therefore, the quality of the global feature
is greatly compromised when representations of different nodes
become indistinguishable. By applying PLAM, the over-smoothing
problem is alleviated and therefore enhance the model perfor-
mance. 2) In citation networks, edges represent the academic con-
nection between the nodes, which means that the connected nodes
belong to the same class with high probability and message pass-
ing along these edges are reliable. However, in the image classifica-
tion task, the useful information is largely represented in the
foreground of the input image. Nodes on the edges of the fore-
ground will be inevitably connected with useless background
nodes. Traditional GCNs treat all neighbors with equal status in
the aggregation function, leading to the spread of background
information. With the self-attention mechanism, connections
within foreground nodes will be further addressed.

An interesting observation is that the performances of PLAM
models are slightly better without residual connection in the net-
work structure. In fact, if we set the attention coefficients between
the anchor node and neighbor nodes to be 0 and the anchor node
towards itself to be 1, the PLAM layer corresponds to a residual
connection. Therefore, information from the previous layer has
already been considered in the original structure and the extra
residual connection is not necessarily required.

5.2.2. Point cloud semantic segmentation
Datasets and experimental setup. We evaluate PLAM on the

S3DIS Semantic Segmentation dataset and apply the module to a
ResGCN-28 structure proposed by [34]. The model contains a
GCN backbone block, a fusion block and a MLP prediction block,



Fig. 2. Performances of directed and undirected self-attention modules (abbrevi-
ated as PLAMd and PLAMu) on Reddit combined with (a) GraphSAGE and (b) SGC.

Table 8
Test accuracies (%) on image classification datasets. We report mean values and
standard deviations of the test accuracies in 5 independent experiments.

Dataset Model #Param Acc (Residual) Acc (No Residual)

MNIST GCN [27] 101,365 89.99 ± 0.15 89.05 ± 0.21
GraphSAGE [20] 102,691 97.09 ± 0.02 97.20 ± 0.17

GAT [58] 110,400 95.62 ± 0.13 95.56 ± 0.16
GatedGCN [1] 104,217 97.37 ± 0.06 97.47 ± 0.13

PLAM 108,697 97.98 ± 0.10* 97.99 ± 0.11*

CIFAR10 GCN [27] 101,657 54.46 ± 0.10 51.64 ± 0.45
GraphSAGE [20] 102,907 65.93 ± 0.30 66.08 ± 0.24

GAT [58] 110,704 65.40 ± 0.38 65.48 ± 0.33
GatedGCN [1] 104,357 69.19 ± 0.28 69.37 ± 0.48

PLAM 108,697 71.49 ± 0.37* 71.94 ± 0.28*

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
where we substitute the original GCN layers with PLAM layers. The
training configurations are identical with [34]. For simplicity, we
refer to our model as ResPLAM.

Performances. We compare ResPLAM to state-of-the-art base-
lines and Table 9 shows the empirical results on S3DIS datasets. As
we can see, PLAM effectively enhances the performance based on
ResGCN-28 and outperforms other GNN-based models. Addition-
Table 7
Dataset Statistics.

Dataset #Graphs #Classes Avg. Nodes

MNIST 70,000 10 70.57
CIFAR10 60,000 10 117.63

84
ally, PLAM achieves the highest result in 8 of 13 classes. These
experimental results prove that our PLAM can be implemented in
deeper and wider GCN-based networks, showing the potential of
applying PLAM on more sophisticated tasks.

5.3. Discussion

5.3.1. Random splits
As illustrated in [54], using the same train/validation/test splits

of the same datasets precludes a fair comparison of different archi-
tectures. Therefore, we follow the setup in [54] and evaluate the
performance of PLAM on three citation networks with random
splits. Empirically, for each dataset, we use 20 labelled nodes per
class as the training set, 30 nodes per class as the validation set,
and the rest as the test set. For every model, we pick the hyperpa-
rameter that achieves the best average accuracy on Cora and Cite-
Seer datasets and applied to the Pubmed dataset.

Table 10 shows the results on three citation networks under the
random split setting. As we can observe, PLAM consistently
achieves higher performances on all the datasets. On Citeseer,
the test accuracy of PLAM is nearly comparable to the original split,
while most of the baselines suffer from a serious decline.

5.3.2. Ablation – module parts
Practically, three parts in our PLAM contributes to the final per-

formance: (1) separate query and key projection weights; (2) the
inner-product attention computation to achieve higher-level infor-
mation; (3) the structural encoding technique. To better show the
effectiveness of each part, we perform ablations on transductive
datasets, Citeseer, Cora, Pubmed and summarize the results in
Table 11. As we can observe, all three parts contribute to the better
performance. Comparably, leveraging higher-level information are
proved to be most effective, where a large performance drop can be
observed without it.

5.3.3. Ablation – C
As we have illustrated in Section 3.3, hyperparameter C is

adopted to reduce the dimension of the attention learning matrix
Wq;Wk and consequently reduce the additional parameters of
PLAM. To fully investigate the influence of C, we conduct experi-
ments on PLAM models with different Cs on the citation networks.
As we can observe in Fig. 5, even with a large value of C, PLAM still
consistently outperforms GAT. Meanwhile, the improvement
Avg. Edges Node feat. (dim) Edge feat. (dim)

564.53 Pixel + Coord (3) Node Dist(1)
941.07 Pixel[RGB]+Coord (5) Node Dist(1)



Table 9
Experiments of ResPLAM-28 with state-of-the-art methods on S3DIS Semantic Segmentation. ResPLAM model follows the architecture adopted in [34] and substitute the GCN
layers with PLAM layers. We report per-class results and mean IoU (mIoU) score.

Method mIOU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [47] 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
MS + CU [12] 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5
G + RCU [12] 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9

PointNet++ [48] 53.2 90.2 91.7 73.1 42.7 21.2 49.7 42.3 62.7 59.0 19.6 45.8 48.2 45.6
3DRNN + CF [71] 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6

DGCNN [65] 56.1 – – – – – – – – – – – – –
ResGCN-28 [34] 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4
ResPLAM-28 61.3 93.5 98.0 73.3 30.0 38.5 65.3 70.2 62.5 63.9 36.6 60.9 46.7 57.0

Table 10
Test accuracy (%) on transductive learning datasets with random slits. We report
mean values and standard deviations of the test accuracies over 100 train/validation/
test splits.

Dataset Citeseer Cora Pubmed

GCN [27] 71.9 ± 1.9 81.5 ± 1.3 77.8 ± 2.9
GAT [58] 71.4 ± 1.9 81.8 ± 1.3 78.7 ± 2.3

MoNet [44] 71.2 ± 2.0 81.3 ± 1.3 78.6 ± 2.3
GraphSAGE [20] 71.6 ± 1.9 79.2 ± 7.7 77.4 ± 2.2

PLAM 72.6 ± 1.9 82.3 ± 1.4 78.9 ± 1.7

Table 11
Ablation study on each part of PLAM. We report mean values and standard deviations
of the test accuracies in 30 independent experiments.

Dataset Citeseer Cora Pubmed

w/o separate qk weights 72.87 ± 0.38 83.75 ± 0.64 79.40 ± 0.44
w/o higher-level information 72.62 ± 0.40 83.66 ± 0.36 79.14 ± 0.42

w/o structural encoding 73.03 ± 0.51 83.72 ± 0.48 79.22 ± 0.37
PLAM 73.25 ± 0.46 84.01 ± 0.23 79.41 ± 0.65

Fig. 3. Sorted eigenvalues of the hidden layer and their standard deviat

Fig. 4. Performances of PLAM models with varying re

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88

85
achieved by decreasing C gradually decreases and C = 8 makes a
good balance between effectiveness and efficiency.

5.3.4. Spectral analysis
To testify the effectiveness of the renormalization trick, we con-

duct experiments on the eigenvalues of convolution operators. In
Fig. 3, we show all the eigenvalues of the convolution operator
from the hidden layer. The two curves represent eigenvalues with
and without the trick, respectively. As we can observe, the negative
eigenvalues are significantly increased. Apart from bounding the
norm of spectral radius to 1, it also shrinks the smallest eigenvalue
from �1 to approximately �0.5, which contributes to eliminating
the effect of negative coefficients and improve the numerical sta-
bility. Besides, eigenvalues with the renormalization trick seem
to have lower variances. (See Fig. 4).

5.3.5. Visualization
To analyze the effectiveness of the proposed method qualita-

tively, we follow [58] and provide the 2D t-SNE [42] visualization
of Cora dataset feature representations from the first hidden layer
ions on citation networks with and without renormalization trick.

duction parameter Cs. Use GAT for comparison.



Fig. 5. A t-SNE plot of the feature representations of a PLAM model’s hidden layer on the Cora dataset. Node colours denote classes, and the edge thickness indicates the
normalized undirected attention coefficients.

X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
of PLAM and GAT models(Fig. 5). In the meantime, we visualize the
strengths of the attention coefficients according to the augmented
convolution operator as the line thickness. As we can observe, by
adopting the novel self-attention module, clusters corresponding
to different classes are generally separated and the attentions are
more significant within clusters, indicating the discriminative
capability of the proposed model.

6. Limitations

In this paper, we develop a flexible attention-based module to
address the limitations in existing graph neural networks.
Although the proposed module can effectively improve the perfor-
mances of graph models and alleviate over-smoothing, the dot-
product attention mechanism inevitably introduces additional
computational cost. Researches have also investigated the possibil-
ity of efficient attention modes, e.g., Linformer[63], Reformer[28],
which may serve as the substitution of current attention formula-
tion. In conclusion, improving the efficiency of the training process
will be an interesting future direction.

7. Conclusion

In this paper, we have presented the Plug-in Attention Module
(PLAM), a novel network architecture learning dynamic convolu-
tion filters through the self-attention mechanism. To acquire a con-
veniently applied module with strong representation power, we
introduce the query-key mechanism which transfers the nodes to
two different sub-spaces respectively. A novel structural encoding
technique is proposed to inject local and global structure informa-
tion. Our PLAM models have achieved state-of-the-art perfor-
mances on both transductive and inductive tasks and enhance
the performances on other GCN-based models as well. We have
also demonstrated that PLAM maintains the stability in the train-
ing procedure and alleviates numerical variation through the
renormalization trick. Furthermore, experiments on 2D image
datasets and point cloud dataset have shown the potential applica-
tions of PLAM on computer vision tasks.

Note that, the form of inner production between query-key
pairs adopted in our model is not unique. In the future, we will dis-
cuss the differences of various attention calculation models. Also,
we can explore the possibility of extending the self-attention
mechanism to graph classification tasks as well as more complex
data such as hyper-graphs.

CRediT authorship contribution statement

Xuran Pan: Conceptualization, Methodology, Software, Writing
- original draft. Shiji Song: Supervision, Writing - original draft.
Yiming Chen: Software, Validation. Liejun Wang: Supervision,
86
Writing - review & editing. Gao Huang: Supervision, Writing -
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work is supported in part by the National Science and
Technology Major Project of the Ministry of Science and Technol-
ogy of China under Grants 2018AAA0101604, the National Natural
Science Foundation of China under Grants 61906106 and
62022048, and the Guoqiang Institute of Tsinghua University.

References

[1] X. Bresson, T. Laurent, Residual gated graph convnets, CoRR abs/1711.07553
(2017).

[2] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally
connected networks on graphs, in: International Conference on Learning
Representations, 2014.

[3] H. Cai, V.W. Zheng, K.C. Chang, A comprehensive survey of graph embedding:
Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (2018)
1616–1637.

[4] J. Chen, T. Ma, C. Xiao, Fastgcn: fast learning with graph convolutional
networks via importance sampling, International Conference on Learning
Representations (2018).

[5] J. Chen, J. Zhu, L. Song, Stochastic training of graph convolutional networks
with variance reduction, in: International Conference on Machine Learning,
2017.

[6] S. Das, S. Chakravarthy, Duplicate reduction in graph mining: Approaches,
analysis, and evaluation, IEEE Trans. Knowl. Data Eng. 30 (2018) 1454–1466.

[7] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, Advances in Neural Information
Processing Systems (2016) 3844–3852.

[8] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep
bidirectional transformers for language understanding, CoRR abs/1810.04805
(2018).

[9] J. Du, S. Zhang, G. Wu, J.M. Moura, S. Kar, Topology adaptive graph
convolutional networks, CoRR abs/1710.10370 (2017).

[10] D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular
fingerprints, Advances in Neural Information Processing Systems (2015)
2224–2232.

[11] V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio, X. Bresson, Benchmarking graph
neural networks, 2020. arXiv preprint arXiv:2003.00982..

[12] F. Engelmann, T. Kontogianni, A. Hermans, B. Leibe, Exploring spatial context
for 3d semantic segmentation of point clouds, in: Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2017, pp. 716–724.

[13] F. Feng, X. He, J. Tang, T. Chua, Graph adversarial training: Dynamically
regularizing based on graph structure, IEEE Trans. Knowl. Data Eng. (2019), 1-
1.

[14] M. Fey, J.E. Lenssen, Fast graph representation learning with pytorch
geometric, CoRR abs/1903.02428 (2019).

[15] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene
segmentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 3146–3154.

http://refhub.elsevier.com/S0925-2312(22)00063-7/h0005
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0005
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0010
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0010
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0010
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0010
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0015
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0015
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0015
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0020
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0020
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0020
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0025
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0025
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0025
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0025
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0030
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0030
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0035
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0035
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0035
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0040
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0040
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0040
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0045
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0045
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0050
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0050
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0050
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0050
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0060
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0060
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0060
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0060
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0065
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0065
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0065
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0070
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0070
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0075
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0075
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0075
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0075


X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
[16] H. Gao, S. Ji, Graph u-nets, in: International Conference on Machine Learning,
2019.

[17] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message
passing for quantum chemistry, International Conference on Machine Learning
(2017) 1263–1272.

[18] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010, pp. 249–256.

[19] M. Gori, G. Monfardini, F. Scarselli, A newmodel for learning in graph domains,
in: Proceedings of the IEEE International Joint Conference on Neural Networks,
2005, pp. 729–734..

[20] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, Advances in Neural Information Processing Systems (2017) 1024–
1034.

[21] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[22] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-
structured data, CoRR abs/1506.05163 (2015).

[23] L. Hong, L. Zou, X. Lian, P.S. Yu, Subgraph matching with set similarity in a large
graph database, IEEE Trans. Knowl. Data Eng. 27 (2015) 2507–2521.

[24] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4700–4708.

[25] B. Jiang, Z. Zhang, D. Lin, J. Tang, B. Luo, Semi-supervised learning with graph
learning-convolutional networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 11313–11320.

[26] A. Kapoor, A. Galstyan, B. Perozzi, G.V. Steeg, H. Harutyunyan, K. Lerman, N.
Alipourfard, S. Abu-El-Haija, Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing, in: International
Conference on Machine Learning, 2019.

[27] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: International Conference on Learning Representations, 2017.

[28] Kitaev, N., Kaiser, Ł., Levskaya, A., 2020. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451.

[29] J. Klicpera, A. Bojchevski, S. Günnemann, Predict then propagate: Graph neural
networks meet personalized pagerank, in: International Conference on
Learning Representations, 2018.

[30] J. Klicpera, S. Weißenberger, S. Günnemann, Diffusion improves graph
learning, 2019. http://arxiv.org/abs/1911.05485arXiv:1911.05485..

[31] B. Knyazev, G.W. Taylor, M. Amer, Understanding attention and generalization
in graph neural networks, Advances in Neural Information Processing Systems
(2019) 4204–4214.

[32] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Advances in Neural Information Processing
Systems (2012) 1097–1105.

[33] J. Lee, I. Lee, J. Kang, Self-attention graph pooling, in: International Conference
on Machine Learning, 2019.

[34] G. Li, M. Muller, A. Thabet, B. Ghanem, Deepgcns: Can gcns go as deep as cnns?,
in: Proceedings of the IEEE International Conference on Computer Vision,
2019, pp 9267–9276.

[35] Q. Li, Z. Han, X.M. Wu, Deeper insights into graph convolutional networks for
semi-supervised learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

[36] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural
networks, in: International Conference on Learning Representations, 2016.

[37] R. Liao, Z. Zhao, R. Urtasun, R.S. Zemel, Lanczosnet: Multi-scale deep graph
convolutional networks, CoRR abs/1901.01484 (2019).

[38] G. Liu, Y. Liu, K. Zheng, A. Liu, Z. Li, Y. Wang, X. Zhou, Mcs-gpm: Multi-
constrained simulation based graph pattern matching in contextual social
graphs, IEEE Trans. Knowl. Data Eng. 30 (2018) 1050–1064.

[39] S. Luan, M. Zhao, X.W. Chang, D. Precup, Break the ceiling: Stronger multi-scale
deep graph convolutional networks, Advances in neural information
processing systems (2019) 10945–10955.

[40] J. Ma, P. Cui, K. Kuang, X. Wang, W. Zhu, Disentangled graph convolutional
networks, International Conference on Machine Learning (2019) 4212–4221.

[41] J. Ma, W. Tang, J. Zhu, Q. Mei, A flexible generative framework for graph-based
semi-supervised learning, CoRR abs/1905.10769 (2019).

[42] L.V.D. Maaten, G. Hinton, Visualizing data using t-sne, J. Mach. Learn. Res. 9
(2008) 2579–2605.

[43] M.T. Mills, N.G. Bourbakis, Graph-based methods for natural language
processing and understanding-a survey and analysis, IEEE Trans. Syst., Man,
Cybern.: Syst. 44 (2014) 59–71, https://doi.org/10.1109/TSMCC.2012.2227472.

[44] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M.M. Bronstein, Geometric
deep learning on graphs and manifolds using mixture model cnns, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 5115–5124.

[45] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for
graphs, International Conference on Machine Learning (2016) 2014–2023.

[46] S. Pan, J. Wu, X. Zhu, Cogboost: Boosting for fast cost-sensitive graph
classification, IEEE Trans. Knowl. Data Eng. 27 (2015) 2933–2946.

[47] C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3d
classification and segmentation, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 652–660.
87
[48] C.R. Qi, L. Yi, H. Su, L.J. Guibas, Pointnet++: Deep hierarchical feature learning
on point sets in a metric space, Advances in neural information processing
systems (2017) 5099–5108.

[49] S. Qi, W. Wang, B. Jia, J. Shen, S.C. Zhu, Learning human-object interactions by
graph parsing neural networks, in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 401–417.

[50] M. Qu, Y. Bengio, J. Tang, Gmnn: Graph markov neural networks, in:
International Conference on Machine Learning, 2019.

[51] R.A. Rossi, R. Zhou, N.K. Ahmed, Deep inductive graph representation learning,
IEEE Trans. Knowl. Data Eng. 32 (2020) 438–452.

[52] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph
neural network model, IEEE Trans. Neural Networks 20 (2008) 61–80.

[53] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad, Collective
classification in network data, AI Magazine 29 (2008), 93-93.

[54] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, Pitfalls of graph neural
network evaluation, CoRR abs/1811.05868 (2018).

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–
9.

[56] K.K. Thekumparampil, C. Wang, S. Oh, L.J. Li, Attention-based graph neural
network for semi-supervised learning, CoRR abs/1803.03735 (2018).

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, Advances in Neural Information
Processing Systems (2017) 5998–6008.

[58] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, in: International Conference on Learning Representations,
2018.

[59] P. Veličković, W. Fedus, W.L. Hamilton, P. Liò, Y. Bengio, R.D. Hjelm, Deep graph
infomax, International Conference on Learning Representations (2019).

[60] V. Verma, M. Qu, A. Lamb, Y. Bengio, J. Kannala, J. Tang, Graphmix: Regularized
training of graph neural networks for semi-supervised learning, 2019. arXiv
preprint arXiv:1909.11715..

[61] H. Wang, J. Wu, X. Zhu, Y. Chen, C. Zhang, Time-variant graph classification,
IEEE Trans. Syst., Man, Cybern.: Syst. 50 (2020) 2883–2896, https://doi.org/
10.1109/TSMC.2018.2830792.

[62] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma, Z.
Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A.J. Smola, Z. Zhang, Deep graph
library: Towards efficient and scalable deep learning on graphs, ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019),
URL: https://arxiv.org/abs/1909.01315.

[63] S. Wang, B.Z. Li, M. Khabsa, H. Fang, H. Ma, Linformer: Self-attention with
linear complexity, 2020. arXiv preprint arXiv:2006.04768..

[64] W. Wang, X. Lu, J. Shen, D.J. Crandall, L. Shao, Zero-shot video object
segmentation via attentive graph neural networks, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 9236–9245.

[65] Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic
graph cnn for learning on point clouds, ACM Transactions on Graphics (TOG)
38 (2019) 1–12.

[66] F. Wu, T. Zhang, A.H.d. Souza Jr, C. Fifty, T. Yu, K.Q. Weinberger, Simplifying
graph convolutional networks, in: International Conference on Machine
Learning, 2019.

[67] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, T. Tan, Session-based recommendation
with graph neural networks, in: Proceedings of the AAAI Conference on
Artificial Intelligence, 2019, pp. 346–353.

[68] W. Wu, B. Li, L. Chen, X. Zhu, C. Zhang, k -ary tree hashing for fast graph
classification, IEEE Trans. Knowl. Data Eng. 30 (2018) 936–949.

[69] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?,
CoRR abs/181000826 (2018).

[70] L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text classification, in:
Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp. 7370–
7377.

[71] X. Ye, J. Li, H. Huang, L. Du, X. Zhang, 3d recurrent neural networks with
context fusion for point cloud semantic segmentation, in: Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 403–417.

[72] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, J. Leskovec, Hierarchical graph
representation learning with differentiable pooling, Advances in Neural
Information Processing Systems (2018) 4800–4810.

[73] J. You, R. Ying, J. Leskovec, Position-aware graph neural networks, in:
International Conference on Machine Learning, 2019.

[74] X. Yuan, J. Guo, X. Hao, H. Chen, Traffic sign detection via graph-based ranking
and segmentation algorithms, IEEE Trans. Syst., Man, Cybern.: Syst. 45 (2015)
1509–1521, https://doi.org/10.1109/TSMC.2015.2427771.

[75] S. Yun, M. Jeong, R. Kim, J. Kang, H.J. Kim, Graph transformer networks,
Advances in Neural Information Processing Systems (2019) 11983–11993.

[76] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative
adversarial networks, in: International Conference on Machine Learning,
2019.

[77] Q. Zhang, L. Ge, R. Zhang, G.I. Metternicht, Z. Du, J. Kuang, M. Xu, Deep-
learning-based burned area mapping using the synergy of sentinel-1&2 data,
Remote Sens. Environ. 264 (2021) 112575.

[78] R. Zhang, L. Xu, Z. Yu, Y. Shi, C. Mu, M. Xu, Deep-irtarget: An automatic target
detector in infrared imagery using dual-domain feature extraction and
allocation, IEEE Trans. Multimedia (2021).

http://refhub.elsevier.com/S0925-2312(22)00063-7/h0080
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0080
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0080
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0085
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0085
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0085
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0090
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0090
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0090
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0090
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0100
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0100
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0100
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0105
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0105
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0105
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0105
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0110
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0110
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0115
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0115
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0120
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0120
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0120
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0120
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0125
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0125
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0125
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0125
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0130
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0130
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0130
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0130
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0130
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0135
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0135
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0135
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0145
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0145
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0145
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0145
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0155
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0155
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0155
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0160
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0160
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0160
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0165
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0165
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0165
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0170
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0170
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0170
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0170
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0175
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0175
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0175
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0175
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0180
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0180
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0180
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0185
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0185
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0190
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0190
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0190
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0195
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0195
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0195
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0200
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0200
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0205
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0205
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0210
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0210
https://doi.org/10.1109/TSMCC.2012.2227472
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0220
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0220
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0220
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0220
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0220
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0225
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0225
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0230
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0230
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0235
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0235
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0235
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0235
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0240
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0240
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0240
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0245
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0245
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0245
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0245
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0250
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0250
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0250
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0255
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0255
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0260
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0260
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0265
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0265
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0270
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0270
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0275
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0275
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0275
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0275
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0275
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0280
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0280
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0285
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0285
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0285
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0285
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0290
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0290
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0290
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0290
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0295
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0295
https://doi.org/10.1109/TSMC.2018.2830792
https://doi.org/10.1109/TSMC.2018.2830792
https://arxiv.org/abs/1909.01315
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0320
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0320
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0320
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0320
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0325
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0325
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0325
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0330
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0330
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0330
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0330
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0335
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0335
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0335
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0335
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0340
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0340
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0345
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0345
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0350
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0350
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0350
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0350
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0355
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0355
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0355
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0355
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0360
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0360
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0360
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0365
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0365
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0365
https://doi.org/10.1109/TSMC.2015.2427771
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0375
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0375
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0380
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0380
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0380
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0380
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0385
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0385
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0385
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0390
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0390
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0390


X. Pan, S. Song, Y. Chen et al. Neurocomputing 480 (2022) 76–88
[79] Y. Zhang, S. Pal, M. Coates, D. Ustebay, Bayesian graph convolutional neural
networks for semi-supervised classification, in: Proceedings of the AAAI
Conference on Artificial Intelligence, 2019, pp. 5829–5836.

[80] K. Zhou, Q. Song, X. Huang, D. Zha, N. Zou, X. Hu, Multi-channel graph
convolutional networks, 2019. arXiv preprint arXiv:1912.08306..

[81] M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with
graph convolutional networks, Bioinformatics 34 (2018) i457–i466.

[82] M. Zitnik, J. Leskovec, Predicting multicellular function through multi-layer
tissue networks, Bioinformatics 33 (2017) i190–i198.

Xuran Pan received his B.S. degrees in Department of
Automation, Tsinghua University in 2018. From 2018 he
started his Ph.D. at Institute of System Integration,
Department of Automation, Tsinghua University, China.
His main research interests include deep learning,
especially in computer vision and graph neural network.
Shiji Song received the Ph.D. degree in mathematics
from the Department of Mathematics, Harbin Institute
of Technology, Harbin, China, in 1996. He is currently a
Professor with the Department of Automation, Tsinghua
University, Beijing, China. He has authored over 180
research papers. His current research interests include
system modeling, optimization and control, computa-
tional intelligence, and pattern recognition.
Yiming Chen received his B.S. degrees in Department of
Automation, Tsinghua University in 2015. From 2015 he
started his Ph.D. at Institute of System Integration,
Department of Automation, Tsinghua University, China.
His main research interests include deep learning,
especially in computer vision and graph convolutional
network.
88
Liejun Wang received the Ph.D. degree from the School
of Information and Communication Engineering, Xi’an
Jiaotong University, Xi’an, China, in 2012. He is currently
a Professor with Xinjiang University, Ürümqi, China. His
current research interests include computer vision,
natural language processing, and wireless sensor.
Gao Huang received the B.S. degree from the School of
Automation Science and Electrical Engineering, Beihang
University, Beijing, China, in 2009, and the Ph.D. degree
from the Department of Automation, Tsinghua Univer-
sity, Beijing, in 2015. He was a Visiting Research Scholar
with the Department of Computer Science and Engi-
neering, Washington University in St. Louis, St. Louis,
MO, USA, in 2013 and was a Post-Doctoral Researcher
with Department of Computer Science, Cornell Univer-
sity, Ithaca, USA from 2015 to 2018. He is currently an
assistant professor at the Department of Automation,
Tsinghua University. His research interests include
machine learning and deep learning.

http://refhub.elsevier.com/S0925-2312(22)00063-7/h0395
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0395
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0395
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0395
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0405
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0405
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0410
http://refhub.elsevier.com/S0925-2312(22)00063-7/h0410

	PLAM: A plug-in module for flexible graph attention learning
	1 Introduction
	2 Related works
	2.1 Graph neural networks
	2.2 Attention-based GCNs

	3 Method
	3.1 Preliminaries
	3.2 Graph convolutional networks
	3.3 Plug-in attention module for GCNs
	3.4 Structural encoding
	3.5 Attention modes
	3.5.1 Symmetric attention
	3.5.2 Asymmetric attention

	3.6 Comparisons to GAT

	4 Spectral analysis
	4.1 Symmetric mode
	4.2 Asymmetric mode
	4.3 Spectral reduction

	5 Experiments
	5.1 Node classification
	5.1.1 Datasets and experimental setup
	5.1.2 Transductive learning
	5.1.3 Inductive learning

	5.2 Downstream tasks
	5.2.1 Image classification
	5.2.2 Point cloud semantic segmentation

	5.3 Discussion
	5.3.1 Random splits
	5.3.2 Ablation – module parts
	5.3.3 Ablation – C
	5.3.4 Spectral analysis
	5.3.5 Visualization


	6 Limitations
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


